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ABSTRACT

Models of background variation in genomic regions form the basis of linkage disequilibrium mapping
methods. In this workwe analyze abackgroundmodel that groups SNPs intohaplotypeblocks and represents
the dependencies between blocks by a Markov chain. We develop an error measure to compare the perfor-
mance of this model against the common model that assumes that blocks are independent. By examining
data from the International Haplotype Mapping project, we show how the Markov model over haplotype
blocks is most accurate when representing blocks in strong linkage disequilibrium. This contrasts with the
independent model, which is rendered less accurate by linkage disequilibrium. We provide a theoretical
explanation for this surprising property of the Markov model and relate its behavior to allele diversity.

GENETIC mapping studies based on linkage dis-
equilibrium (LD) require a model of the back-

ground variation in the region being examined. The
studies look for markers at which the norms of this
model are violated by a set of diseased individuals, in-
ferring that any such markers are likely to be close to a
disease-causing allele. While many LD mapping meth-
ods do not explicitly refer to such a background model,
it exists nonetheless as an underlying assumption. For
example, a x2-correlation test between disease status and
the allele frequencies at individual SNPs assumes that
the alleles at each SNP are distributed independently.

Recent work on human genomic variation suggests
that it is fruitful to group SNPmarkers together intohap-
lotype blocks (Daly et al. 2001; Goldstein 2001; Patil
et al. 2001; Gabriel et al. 2002; Wall and Pritchard
2003). These blocks are thought to be delineated by
recombination hotspots, small areas in which the prob-
ability of recombination is far higher than that in
the surrounding regions ( Jeffreys et al. 2000, 2001;
Templeton et al. 2000; Wang et al. 2002; Arnheim et al.
2003; Phillips et al. 2003; Twells et al. 2003). The low
probability of recombination inside each block means
that the alleles at the SNPs within are passed together
from one generation to the next. Therefore, each hap-
lotype block can be considered as a single marker, with
the set of alleles at the SNPs in the block constituting
its allele (Cardon and Abecasis 2003; Tishkoff and
Verrelli 2003). It is hoped that haplotype blocks will
enable fewer SNP markers to be genotyped during LD
mapping studies, since a small number of haplotype-
tagging SNPs (htSNPs) can be used to identify the

common alleles of each block ( Johnson et al. 2001;
Zhang et al. 2002; Sebastiani et al. 2003). The Interna-
tionalHaplotypeMappingProject (HapMap) is currently
producing a high-density haplotype map of the human
genome for several target populations, to enable the
efficient selection of htSNPs (International HapMap

Consortium 2003).
It is not practical or desirable to represent the back-

ground variation over SNP or block markers in a large
chromosomal region using a full joint distribution. A
model must also infer something about the structure of
the distribution, so that it is sufficiently robust to deal
with additional individuals or a future generation. Since
models of background variation are generally inferred
from a small sample of haplotypes, many haplotypes
present in the population will not appear in the sample
obtained.
The most obvious approximation of the full joint

distribution is a model that assumes that all markers are
independent, i.e., that the probability of a haplotype is
the product of the frequencies of each allele within.
This type of model is common and constitutes an im-
plicit assumption in many LD mapping studies. The
independent model has the advantage of requiring a
small number of parameters, namely the frequencies for
each allele. However, this model breaks down when rep-
resenting the variation over short distances, since mark-
ers that are close together tend to exhibit a high degree
of linkage disequilibrium that cannot be captured by an
independent approximation.
In this article, we focus on a different model, namely

the Markov chain. In the Markov model, the probability
of each allele at a marker is conditional on the allele
present at the previous marker. This model is able to
represent some of the correlations that exist in a ge-
nomic region, while still keeping to a linear number of
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parameters. For example,whenmodelingblockmarkers
with four possible alleles, the Markov model will require
four times asmany parameters as the independentmodel.
Many of the existing methods for partitioning regions
into haplotype blocks include a Markov chain in their
models (Daly et al. 2001; Anderson andNovembre 2003;
Greenspan and Geiger 2004a; Kimmel and Shamir
2004). Several published approaches to LD mapping
also use a Markov chain to represent the background
variation over blocks or individual SNPs (McPeek and
Strahs 1999; Morris et al. 2000; Liu et al. 2001; Morris

et al. 2002; Greenspan and Geiger 2004b).
For any given joint distribution, a Markov approxima-

tion will clearly be more accurate than an independent
approximation, since it has more parameters available
for optimization. However, we describe in this article an
important additional property of the Markov approx-
imation that we consider surprising. When used to
model haplotype blocks, the Markov approximation is
most accurate in the presence of high levels of linkage
disequilibrium. Consequently, the Markov model is
more accurate for blocks that are close together than
for those that are far apart. We also show that when
modeling individual SNPs instead of haplotype blocks,
this property of the Markov model is not exhibited. In
other words, a Markov model over haplotype blocks
provides a uniquely accurate way to represent back-
ground genomic distributions at high resolution. This
result justifies previous work that uses a Markov model
over haplotype blocks for both haplotype resolution and
LD mapping (Greenspan and Geiger 2004a,b).

MATERIALS AND METHODS

Independent and Markov approximations: Consider a
genomic region that contains l markers, placed at physical
locations z1, . . . , zl along the chromosome (measured in base
pairs). Eachmarker j¼ 1, . . . , l has rj alleles, labeled 1, . . . , rj.
We consider a population in Hardy–Weinberg equilibrium, so
the background variation for the region is given in terms of a
joint distribution over haplotype frequencies (Hardy 1908).
Let P(x1, . . . , xl) be the frequency of haplotype x1, . . . , xl in
the population, where each xj takes the values 1, . . . , rj.

Under the independent model, each marker is assumed to
be independent. The maximum-likelihood independent ap-
proximation T(x1, . . . , xl) of the joint distribution P is

T ðx1; . . . ; xl Þ ¼
Yl
i¼1

PðxiÞ;

where

PðxiÞ ¼
X

x1;...;xi�1;xi11;...;xl

Pðx1; . . . ; xl Þ:

Under the Markov model, the distribution for each marker
is dependent on the allele present at the preceding marker.
The maximum-likelihood Markov approximation Q(x1, . . . , xl)
of the joint distribution is

Q ðx1; . . . ; xl Þ ¼ Pðx1Þ
Yl�1

i¼1

Pðxi11 j xiÞ;

where

Pðxi11 j xiÞ ¼
P

x1;...;xi�1;xi12;...;xl
Pðx1; . . . ; xl ÞP

x1;...;xi�1;xi11;...;xl
Pðx1; . . . ; xl Þ

:

Error measures: Given a distance d and a number n $ 3 of
markers, we generate statistics Yd,n and Zd,n to quantify the
average error of the independent and Markov approxima-
tions, respectively, over a chromosome or large genomic re-
gion. We set a minimum of n ¼ 3 since a Markov model can
represent any joint distribution over one or two loci perfectly,
rendering our measure meaningless.

The statistics Yd,n and Zd,n for a genomic region are gen-
erated by averaging the respective sets of statistics Yd,n( j) and
Zd,n( j) over all valid start markers j within that region. Every
value of Yd,n and Zd,n in our results was calculated by averaging
hundreds or thousands of these individual measurements.
Each statistic Yd,n( j) or Zd,n( j) measures the error of the inde-
pendent or Markov approximation over nmarkers, where the
first marker j1 ¼ j and the other markers j2, . . . , jn are chosen
to be spread approximately evenly over total distance d. Each
marker ji is selected tominimize jzji � zj1 � d � ði � 1Þ=ðn � 1Þj.
If any two of the marker indexes j1, . . . , jn are identical,
we conclude that there is insufficient marker density for n, d,
and j. In this case, j is not a valid start marker and we omit
Yd,n( j) and Zd,n( j) from their respective averages.

We set Yd;nð jÞ ¼ kPðxj1 ; . . . ; xjn Þ � T ðxj1 ; . . . ; xjn Þk, the var-
iation distance between the observed joint distribution P and
the independent approximation T for markers j1, . . . , jn.
Similarly, we set Zd;nð jÞ ¼ kPðxj1 ; . . . ; xjn Þ � Q ðxj1 ; . . . ; xjn Þk,
the variation distance between P and the Markov approxima-
tion Q. The variation distance between two distributions is
defined as follows:

kAðz1; . . . ; znÞ � Bðz1; . . . ; znÞk

¼ 1

2

X
z1;...;zn

jAðz1; . . . ; znÞ � Bðz1; . . . ; znÞj :

This measure is also known as the total variational distance,
Kolmogorov distance, or L1 distance. It has an intuitive defini-
tion as the total amount of probabilitymass thatmust bemoved
tomake one distribution equal to the other. For example, kP�
Tk is the percentage of the population distributed as P that is
misrepresented by the independent approximation T.

The variation distance between the joint distribution P and
its independent approximation T is closely related to the D
measure of linkage disequilibrium for two biallelic markers.
Consider two markers A and B, each with two alleles a1, a2, b1,
and b2 at frequencies p1, p2, q1, and q2, respectively. Let p11, p12,
p21, and p22 be the respective frequencies of the four gametes
a1b1, a1b2, a2b1, and a2b2. The linkage disequilibrium measure
D is defined as D¼ p11 � p1q1 ¼ p1q2� p12 ¼ p2q1 � p21 ¼ p22 �
p2q2 (Devlin and Risch 1995). For example, if A and B are in
perfect linkage equilibrium, then p11 ¼ p1q1, p12 ¼ p1q2, p21 ¼
p2q1, and p22¼ p2q2, and so D¼ 0. By comparison, the variation
distance between P and T is

kP � Tk
¼ 1

2ðjp11 � p1q1j1 jp12 � p1q2j1 jp21 � p2q1j1 jp22 � p2q2jÞ
¼ 1

2ðjDj1 jDj1 jDj1 jDjÞ ¼ 2jDj:

Thus, for two biallelic markers, the variation distance be-
tween the joint distribution P and its independent approxima-
tion T is twice the absolute value of D.
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HapMap analysis: We used the October 2004 data release
of HapMap to profile the error rates of the independent
and Markov approximations for the human genome
(International HapMap Consortium 2003). We inferred
the transmitted and untransmitted haplotypes from both
parents in the 30 CEPH trios, so that 120 haplotypes were
examined for each of the 22 autosomes. Haplotype alleles that
could not be determined were left as unknown. This occurred
at sites for which (a) a genotype was absent, (b) a Mendelian
error was detected, or (c) all three members of the trio were
heterozygous.

We examined the HapMap data using three different ap-
proaches: (a) treating each SNP as an individual marker, (b)
grouping the SNPs into haplotype blocks according to various
criteria, and (c) grouping fixed numbers of adjacent SNPs into
arbitrary blocks.

For the first approach, each SNP marker had rj ¼ 2 alleles,
since all SNP markers genotyped in the HapMap are biallelic.
Trivially, zj was set to the physical location of each SNP.

For the second approach, we used two programs, Haplo-
Block and HaploBlockFinder, to partition the SNP data for
eachchromosome into lblocks (Zhang and Jin2003;Greenspan
and Geiger 2004b). Each block inferred was considered as a
marker and the variants of that block as the marker’s alleles.
The physical location zj of each block j was set to the midpoint
of the chromosomal section containing the SNPs within.

HaploBlock uses a statistical model-fitting criterion to in-
fer the most suitable block partition for a genomic region
(Greenspan and Geiger 2004b). When inferring blocks with
HaploBlock, we removed the dependencies between adjacent
ancestor variables in the statistical model, to prevent a poten-
tial bias in favor of the Markov approximation. We inferred
three full HaploBlock models from the HapMap data, with
a maximum of four, six, and eight ancestral haplotypes per
block, respectively. The HaploBlock statistical model also
allows for recent mutations, so some of the haplotypes ob-
served in a block might differ slightly from their inferred
ancestors.

HaploBlockFinder offers a number of different criteria for
inferring block paritions (Zhang and Jin 2003). We chose the
commonly used chromosomal coverage criterion. This crite-
rion defines a block as a region in which a certain percentage
of the chromosomes can be covered by four haplotypes, with
no additional mutations. We inferred three full HaploBlock-
Finder partitions from the HapMap data, with percentage
thresholds of 70, 80, and 90%, respectively. As this percentage
threshold increases, more of the haplotypes within each block
must be covered by four common variants, so less variation is
permitted overall.

For the third approach, we grouped sets of up to six ad-
jacent SNPs into block markers, without using any additional
criterion. The alleles of each marker were defined by the
observed combinations of alleles at the SNPs within. The goal
of this approach was to determine whether the results ob-
served for haplotype blocks are specific to the criteria used or
whether similar results are observed for such groupings of
SNPs.

Recall that we omit values Yd,n( j) and Zd,n( j) from the aver-
ages Yd,n and Zd,n if n markers are not available with roughly
equal spacing over distance d starting at marker j. We also
omitted the statistics Yd,n( j) and Zd,n( j) if less than half of the
120 haplotypes could be used for sites j1, . . . , jn, due to
missing genotypes or haplotype uncertainty. For the SNP ana-
lyses, a haplotype could not be used if one of the alleles at sites
j1, . . . , jn was not known. For the block-based analyses, a hap-
lotype could not be used if one of the sets of block alleles
could not be assigned to a specific block variant with .50%
certainty.

RESULTS

Summary of models: Table 1 summarizes the SNP
loci examined for each chromosome, as well as the
characteristics of the HaploBlock statistical models
inferred with up to four variants per block. Table 1
shows that the average SNP spacing over all 22 chromo-
somes is 4.02 kb, whereas the average spacing between
the blocks is 44.49 kb. These values provide a rough
lower bound on the distances d and n that can be
examined usefully for the respective models, since n
markers spread over distance d must be spaced at least
d/(n � 1) apart to be included in the averages Yd,n and
Zd,n. Table 2 compares the average values over all 22
chromosomes for the six HaploBlock and HaploBlock-
Finder models. Table 2 also shows the average number
of variants inferred per block for each model.
Distance profiles: We assessed how the error rates of

the independent and Markov approximations varied
overdifferentdistancesd.Thedistanceprofilesweregen-
erated by calculating average values of Yd,n and Zd,n over
the entire autosome for values of 3# n # 5.
We first examine the results for the HaploBlock

model with up to four variants per block. Figure 1 shows
the error measures Zd,n for the Markov approximation
for this model over different distances d. Values are

TABLE 1

Summary for each chromosome of SNPs and the
HaploBlock model with up to four variants

SNPs Haplotype blocks

Chromosome Length Count
Mean
spacing Count

Mean
spacing

1 245,416 47,618 5.15 4,587 53.47
2 243,363 68,659 3.54 5,604 43.42
3 199,162 43,880 4.54 4,132 48.21
4 191,628 42,213 4.54 4,059 47.19
5 180,747 47,651 3.79 4,070 44.41
6 170,674 37,013 4.61 3,567 47.84
7 158,508 35,460 4.47 3,354 47.24
8 146,201 44,926 3.25 3,536 41.34
9 136,199 30,902 4.41 2,812 48.42
10 134,982 29,391 4.59 2,972 45.38
11 134,292 37,281 3.60 3,106 43.24
12 131,969 34,894 3.78 3,093 42.66
13 96,204 24,138 3.99 2,201 43.68
14 87,070 24,104 3.61 2,098 41.51
15 81,870 22,762 3.60 1,966 41.61
16 90,025 21,516 4.18 2,010 44.76
17 81,652 21,511 3.80 1,950 41.89
18 76,096 20,545 3.70 1,866 40.68
19 63,742 15,265 4.18 1,564 40.69
20 63,623 10,794 5.89 1,402 45.36
21 36,965 17,071 2.17 1,279 27.62
22 34,877 15,520 2.25 1,313 26.41

Overall 2,785,266 693,114 4.02 62,541 44.49

All distances are in kilobases.
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shown relative to Zd,n at long distances, where linkage
disequilibrium is minimal. These baseline error mea-
sures Zd,n are 0.135, 0.310, and 0.515 for n¼ 3, 4, and 5,
respectively. To avoid a bias at short distances toward
genomic regions with particularly high levels of varia-
tion, the graph in Figure 1 shows only the average for
distances d$ 100 kb for which at least 75% of the values
Zd,n( j) could be generated.

The graph in Figure 1 highlights our core observa-
tion—that theMarkov approximation performs best for
haplotype blocks that are close together and between
which there are high levels of linkage disequilibrium.
For example, for n ¼ 4 blocks spread over d ¼ 350 kb,
the Markov approximation shows an 8% improvement
compared to 4 blocks spread over the longest distance.
For n¼ 5 blocks, the improvement is 15%. Figure 1 also
shows that the relationship between distance and ac-
curacy is notmonotonic—at intermediate distances, the
approximation performs worse than at both shorter and
longer distances. This phenomenon can be seen most
clearly for n ¼ 3 blocks, where the average accuracy of
the Markov approximation at d¼ 350 kb is equal to that
at long distances, but is less accurate at distances in
between.

Figure 2 shows the corresponding error measures
Yd,n for the independent approximation over different
distances d. In contrast to Figure 1, this graph shows
a monotonic decrease in the independent approxima-
tion’s error with physical distance. This reflects the fact
that the accuracy of the independent approximation
improves as the linkage disequilibrium between blocks
decreases. One would naturally expect the Markov ap-
proximation to behave similarly, yet the results in Figure
1 show otherwise. The values in Figure 2 are shown rela-
tive to baseline error measures Yd,n at long distances of
0.194, 0.366, and 0.565 for n ¼ 3, 4, and 5, respectively.
The baseline increases with the number n of markers
due to the increase in the cardinality of distribution
P(x), which represents 4n different haplotypes for blocks
with four alleles.

We now compare the results from this HaploBlock
model with the approach where each SNP is treated as
an individualmarker with two alleles. Figure 3 compares
the distance profiles of both the Markov and indepen-
dent approximations for the two approaches, using n ¼
4 in all cases. This graph shows that, when modeling
individual SNPs, both the independent and the Markov
approximations perform best over longer distances, i.e.,
where there is less linkage disequilibrium between the

TABLE 2

Summary over all chromosomes of different
haplotype block models

Model
Block
count

Mean
spacing (kb)

Mean
variants

HaploBlock max 4 variants 62,541 44.49 3.60
HaploBlock max 6 variants 48,749 57.07 4.84
HaploBlock max 8 variants 43,364 64.16 5.68

HaploBlockFinder 90%
coverage

88,038 31.61 5.75

HaploBlockFinder 80%
coverage

53,207 52.34 8.79

HaploBlockFinder 70%
coverage

39,575 70.31 11.51

Figure 1.—Distance profile of Markov approximation for
HaploBlock blocks.

Figure 2.—Distance profile of independent approximation
for HaploBlock blocks.

Figure 3.—Comparison of distance profiles for Haplo-
Block blocks and individual SNPs.
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markers modeled. In other words, the Markov model
performs best at short distances only when used with
haplotype blocks. As explained later, this difference in
behavior between blocks and SNPs is related to the
difference in allele diversity.

Figure 4 compares the Markov approximation pro-
files for the three HaploBlock models with up to four,
six, and eight variants per block. Figure 4 shows that, as
the number of variants per block is allowed to increase,
the improvement in the Markov approximation at short
distances becomes more pronounced. In other words,
as the allele diversity of the blocks increases, the be-
havior of the Markov approximation becomes even less
like that for individual SNPs. The values in Figure 4 are
relative to baseline Yd,n measures of 0.310, 0.442, and
0.506 for four, six, and eight variants, respectively.

Figure 5 compares the Markov approximation pro-
files for the three HaploBlockFinder partitions. Recall
that the threshold specifies the percentage of the vari-
ation within each block that can be covered by four com-
mon variants. Figure 5 shows that, as the threshold is
relaxed to allow more variation within each block, there
is more improvement in the Markov approximation at
short distances. Once again, this shows the effect of al-
lele diversity. The values in Figure 5 are relative to base-

line measures of 0.397, 0.550, and 0.631 for coverage
thresholds of 70, 80, and 90%, respectively.
Finally, Figure 6 compares the Markov approxima-

tion profiles for blocks based on arbitrary groupings
of SNPs. Figure 6 shows the effect of increasing the
number of SNPs per group on the performance of the
Markov approximation. Whereas groups of one or two
SNPs perform worse at short distances than at long
distances, this relationship is reversed for groups of four
SNPs or more. The values in Figure 6 are relative to
baselines of 0.051, 0.123, 0.184, and 0.294 for one, two,
four, and six SNPs, respectively.
The curves in Figures 4–6 are labeled with the aver-

age heterozygosity of their respective inferred markers.
Each set of curves shows a clear correlation between
increased marker heterozygosity and the increased ac-
curacy of the Markov approximation at short distances.
As explained later, this relationship stems from the
effects of marker heterozygosity on the dynamics of the
Markov approximation in a recombining population.
Furthermore, Figures 1 and 4–6 all show that the per-
formance of theMarkov approximation is worse at inter-
mediate distances than at both short and long distances.
These results are explained in thenext sectionby reference
to two contrasting processes of mixing and perturbation.
For all measures, the baseline error measures do not

converge to zero at large genomic distances, as would be
the case in the absence of linkage disequilibrium. The
main reason for this is that our sample size is small—-
even if a pair ofmarkers is in perfect linkage equilibrium
in a population, a small sample from that populationwill
contain someLDdue to sampling error. A second reason
is that some long-range LD may be present in the pop-
ulation, due, for example, to admixing or preferential
mating.
Position profiles: We now assess how the accuracy

of the independent and Markov approximations varies
along each chromosome in comparison with local re-
combination rates. Statistics Yd,n and Zd,n and average
recombination rates were calculated for a sliding win-
dow of 20 Mb across each chromosome. We used fixed

Figure 4.—Comparison of Markov distance profiles for
HaploBlock models.

Figure 5.—Comparison of Markov distance profiles for
HaploBlockFinder models.

Figure 6.—Comparison of Markov distance profiles for
SNP groupings.
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values of d¼ 500 kb and n¼ 4 for all the analyses. Local
recombination rates were taken from the deCODEmap
and aligned against the genome build for our HapMap
data, using the University of California Santa Cruz Table
Browser (Kong et al. 2002; Karolchik et al. 2004).

We correlated the error measures and the recombi-
nation rates over the window positions for each chro-
mosome. Table 3 shows the correlation coefficients for
theHaploBlockmodel with up to four variants per block
and for individual SNPs. Windows with low SNP density
due to their proximity to a centromere were excluded
from these calculations. As can be seen in Table 3, the
Markov approximation for theHaploBlockmodel shows
a positive correlation between recombination rates and
approximation error, with an average coefficient over
the chromosomes of 0.506 6 0.281. This contrasts with
the independent approximation for the HaploBlock
model, with an average coefficient of �0.705 6 0.292.

When considering SNPs individually, a different pic-
ture emerges. The error rates of both the independent
andMarkov approximations are lower in regions of high

recombination, just as in the independent approxima-
tion for the HaploBlock model. For the Markov approx-
imation over individual SNPs, the average coefficient of
correlation over the chromosomes is �0.435 6 0.423.
The performance of the independent approximation
over individual SNPs is similar to that for the Haplo-
Block model, with an average coefficient of �0.666 6

0.358.
The correlation coefficients for chromosomes 21 and

22 in Table 3 differ significantly from themean values in
many cases. This is because the HapMap data cover just
37Mb of chromosome 21 and 35Mbof chromosome 22,
so that a sliding window of 20 Mb produces a weak sig-
nal. Table 3 also shows the results obtained if these chro-
mosomes are removed from the sample, by averaging
those for chromosomes 1–20. In all cases, this reduces
the standard deviation of the values and strengthens the
average correlation.

It is instructive to look at one chromosome in more
depth, to see an example of how the errormeasures vary
in comparison to local recombination rates. We exam-
ine here chromosome 11, since its correlation coeffi-
cients as shown in Table 3 are close to the averages over
all of the chromosomes. Figure 7 shows how the in-
dividual SNP approximation errors vary with recombi-
nation rates over the chromosome. As can be seen, the
error rates of the two approximations follow each other
closely and are strongly anticorrelated with recombi-
nation rates. At the ends of the chromosome where
recombination rates are highest, both approximations
perform well. At the centromere, where recombination
rates are generally lower, the opposite effect is seen. In
particular, recombination rates near the centromere are
�50% of the average, while the Markov and indepen-
dent approximation error is 20–30% higher than the
average.

Figure 8 shows the equivalent relationship for the
HaploBlock model with up to four variants. The in-
dependent approximation performs best at the chro-
mosome ends where recombination rates are highest
and worst near the centromere where they are low. The

TABLE 3

Correlation between recombination rates and error measures
for sliding window over individual chromosomes

Haplotype blocks Individual SNPs

Chromosome Markov Independent Markov Independent

1 0.519 �0.794 �0.381 �0.594
2 0.531 �0.791 �0.275 �0.719
3 0.618 �0.797 �0.652 �0.774
4 0.665 �0.788 �0.540 �0.735
5 0.474 �0.851 �0.724 �0.855
6 0.611 �0.766 �0.561 �0.865
7 0.132 �0.887 �0.667 �0.882
8 0.803 �0.690 �0.290 �0.775
9 �0.008 �0.675 0.027 �0.531
10 0.522 �0.823 �0.583 �0.812
11 0.468 �0.762 �0.442 �0.660
12 0.826 �0.806 �0.710 �0.811
13 0.816 �0.949 �0.860 �0.932
14 0.455 �0.909 �0.695 �0.914
15 0.833 �0.848 0.119 �0.793
16 0.522 �0.734 0.549 0.002
17 0.241 �0.812 �0.655 �0.626
18 0.571 �0.927 �0.832 �0.853
19 0.595 �0.619 �0.662 �0.826
20 0.941 �0.503 �0.711 �0.904
21 0.060 0.355 0.682 0.640
22 �0.069 �0.142 �0.718 �0.439

1–22 mean 0.506 �0.705 �0.435 �0.666
1–22 SD 0.281 0.292 0.423 0.358

1–20 mean 0.557 �0.787 �0.477 �0.743
1–20 SD 0.238 0.107 0.355 0.207

The haplotype block column refers to the HaploBlock
model with up to four variants.

Figure 7.—Position profiles for individual SNP models
over chromosome 11.

2588 G. Greenspan and D. Geiger



behavior is very similar to that presented in Figure 7 for
individual SNPs. By contrast, theMarkov approximation
for blocks performs worst at the ends of the chro-
mosome and best near the centromere. Consequently,
unlike the SNP approximations shown in Figure 7, the
independent andMarkov approximations for haplotype
blocks are significantly out of phase.

Figure 9 summarizes the behavior of the Markov posi-
tion profiles for all the differentmodels examined. Each
point compares the average marker heterozygosity for a
particular model against the average gradient for that
model of the best-fit line between theMarkov errormea-
sure and recombination rates. This gradient DZ/DcM/Mb

measures the strength of the effect of local recombi-
nation rates on the local performance of the Markov
model. Figure 9 shows that for each set of related mod-
els, this strength rises monotonically with the average
heterozygosity. In the section that follows, we provide a
theoretical explanation for this three-way relationship
betweenheterozygosity, recombination, and the accuracy
of the Markov approximation.

ON THE MARKOV MODEL

Mixing and perturbation: We define mixing as the
progressive reduction in linkage disequilibrium between
the markers on a chromosome, as a result of recombi-
nation. In a theoretical closed population with random
mating, all markers on a chromosome will converge on
perfect linkage equilibrium (Geiringer 1944). How-
ever, the speedof themixingprocess depends on twokey
factors: (a) mixing is faster between more distant mark-
ers due to the higher probability of recombination, and
(b) mixing is faster between markers with fewer alleles
(e.g., SNPs) since each recombination is more likely
to bring the marker distribution closer to equilibrium
(Rabani et al. 1998; Ardlie et al. 2002; Varilo et al. 2003).
Since the independent approximation error stems from
linkage disequilibrium, the speed of mixing also deter-
mines the accuracy of this approximation at different
distances. An independent model is a special case of a
Markovmodel, so themixing process also contributes to
the accuracy of the Markov approximation.
We introduce here a second process related to recom-

binationcalledperturbation,whichaffects only theMarkov
approximation. Perturbation is defined as the introduc-
tion of new long-range correlations betweenmarkers on
a chromosome, as a result of double recombinations.
These long-range correlations contribute to inaccuracy
in the Markov model. Let us assume that two parent
haplotypes are completely distinct from each other. The
joint distribution over any set of markers in the parent
haplotypes can be represented perfectly by a Markov
model, since the allele at each variable site completely
determines that at the next site. However, offspring hap-
lotypes produced by double recombination from these
parents receive two disjoint sections from one parent,
separated by a section from the other parent, as shown
in Figure 10. In these cases, the correlation between the
disjoint sections cannot be expressed in terms of the
intermediate region. Since the Markov model represents
only dependencies between immediately adjacent mark-
ers, these double recombinations introduce inaccuracy
in the Markov approximation for the offspring that was
not present in the parents. As with the mixing process,
this perturbation effect is strongest where the probabil-
ity of recombination is higher, since this also means a
higher probability of double recombinations.

Figure 8.—Position profiles for haplotype block models
over chromosome 11.

Figure 9.—Effect of heterozygosity on average best-fit gra-
dient between Markov error and recombination rates.

Figure 10.—Meiotic recombination.
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The perturbation process constitutes a key difference
between the dynamics of the independent and Markov
models. In an infinite population, the accuracy of the
independent approximation for a set of markers in-
creases monotonically from one generation to the next.
By contrast, the accuracy of the Markov approximation
can increase or decrease, depending on the relative in-
tensity of the mixing and perturbation processes. As we
show later, the perturbation process can be stronger for
markers with a larger number of alleles, rendering it
more visible for multiallelic haplotype blocks than for
biallelic SNPmarkers. This explains whywe see apositive
correlation between recombination rates and Markov
approximation error for blocks, where perturbation is
pronounced, but do not see this effect when modeling
individual SNPs where perturbation is weaker.

The complex relationship shown in Figures 1 and 4–
6 between physical distance and the accuracy of the
Markov approximation for haplotype blocks is also ex-
plained by the balance between mixing and perturba-
tion. At short distances, theMarkov approximation over
blocks is accurate due to the low probability of double
recombination and the consequent lack of perturba-
tion. At long distances, the Markov approximation over
blocks is accurate due to the high probability of recom-
bination and the consequent strong mixing. At inter-
mediate distances, some perturbation takes place but
mixing is weak, so the performance of the Markov ap-
proximation over haplotype blocks is at its worst.

Intermixing: For meiotic recombination under ran-
dom mating, an offspring haplotype is generated from
two parent haplotypes by the process depicted in Figure
10. Two parent haplotypes are selected independently
from the source population. The offspring haplotype is
generated from these parents by a reading process that
crosses over from one parent to the other with proba-
bility uj between markers j and j 1 1, where uj is the
recombination fraction between the markers. As a re-
sult, the offspring haplotype can contain alternating
stretches of genetic material from the two parents.

Our proof makes use of a different process called
intermixing. Figure 11 depicts the intermixing process

with the same crossover points as the meiosis in Figure
10. In intermixing, a large number of parent haplotypes
are selected independently from the source population.
The offspring haplotype is generated from these par-
ents by a reading process that moves to a new parent
with probability uj between markers j and j 1 1. An
offspring haplotype generated by intermixing with x
crossovers will contain genetic material from x 1 1 in-
dependently selected parents. In contrast to normal
meiosis, the theoretical intermixing process cannot in-
troduce new long-range dependencies, since the read-
ing process never returns to a parent previously used.

The key point for our purposes is that if the first two
intermixing parents are the same as those for meiosis,
the results of meiosis and intermixing are identical if no
more than one crossover took place. With less than two
crossovers, intermixing uses only the first two parent
haplotypes, producing the same offspring haplotype as
meiosis. Differences arise only due to double crossovers,
after which meiosis returns to the first parent haplotype
whereas intermixing selects a new parent. The proof
that follows is based on this similarity between the two
processes and the fact that intermixing preserves the
Markov properties of a population regardless of how
many crossovers take place.

Theorem: Consider a population of infinite size in
Hardy–Weinberg equilibrium. This population under-
goes random mating and meiotic recombination with-
out interference in a series of discrete generations.
Consider a set of n markers numbered 1, . . . , n, with
recombination fraction uj between each pair of adjacent
markers j and j 1 1.

Define Pu(x1, . . . , xn) as the haplotype distribution
over sites 1, . . . , n in generation u andQuðx1; . . . ; xnÞ ¼
Puðx1Þ

Qn�1
i¼1 Puðxi11 j xiÞ as its Markov approximation.

Similarly, Pu11 is the haplotype distribution that emerges
in generationu1 1 andQu11 is itsMarkov approximation.

We define Zu ¼ kPu � Quk as the variation distance
between distributions Pu and Qu, and Zu11 ¼ kPu11�
Qu11k. LetDuð jÞ ¼ 1�

P
xj
ðPuðxjÞÞ2 be the heterozygos-

ity of site j in generation u, defined by the probability
that two haplotypes chosen randomly from distribution
Pu differ at site j. Our theorem states that for n # 5

Zu11 #Zu 1
1

2

Xn�1

i¼1

ui

 !2

� min 1;
Xn
j¼3

Duð jÞ
 !

: ð1Þ

Thus, the error Zu11 of the Markov approximation in
generation u 1 1 is bounded by the error Zu in genera-
tion u, plus an additional term that depends on two
factors. The first factor is the square of the total of the
intermarker recombination fractions. The second fac-
tor is the sum of the heterozygosities of sites 3, . . . , n,
bounded to be no more than 1.

A full proof of Equation 1 for n# 5 is provided in the
appendix. The outline is as follows. Let P9u11 be the

Figure 11.—Intermixing.
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distribution that emerges from performing intermixing
on generation u andQ9u11 be itsMarkov approximation.
We use P9u11 and Q9u11 to prove the bound on Zu11 ¼
kPu11 � Qu11k by applying the triangular inequality

kPu11 �Qu11k#kPu11 � P 9u11k1kP 9u11 �Q 9u11k1kQ 9u11 �Qu11k:

The first step is to prove an upper bound on kPu11 �
P9u11k, the variation distance between the haplotype dis-
tributions generated by meiosis and intermixing. This
distance is bounded by 1

2

Pn�1
i¼1 ui

� �2� minð1;
Pn

j¼3 Duð jÞÞ.
The intuition here is that the results of meiosis and
intermixing differ only if there was a double recom-
bination, the probability of which is bounded byPn�1

i¼1 ui
� �2

. If a double recombination did occur, the
probability that the offspring haplotype will differ be-
tween meiosis and intermixing is bounded by the sum
of the heterozygosities Du( j) for sites j¼ 3, . . . , n, since
j ¼ 3 is the first site that can be affected by a double
recombination.

The second step is to bound kP9u11 � Q9u11k, the
variation distance between the distribution resulting
from intermixing and its Markov approximation. We
prove that for n # 5, this distance is no greater than
kPu�Quk¼ Zu. This result arises because each crossover
event in intermixing selects a new parent haplotype at
random, so no new long-range dependencies are in-
troduced. A proof of this bound for n # 5 is provided
in the appendix. We also conjecture that this bound
holds true for all values of n, as suggested by extensive
simulation.

The final step is to prove that kQ9u11 � Qu11k ¼ 0,
namely that the Markov approximations of the dis-
tributions arising from meiosis and intermixing are
identical. The intuition here is that the Markov approx-
imation is entirely determined by the joint distribution
over each pair of adjacent sites, and this joint distribu-
tion is identical for both intermixing and meiosis.

These results are combined under the triangular in-
equality to yield Equation 1:

kPu11 �Qu11k#kPu11 � P 9u11k1kP 9u11 �Q 9u11k1kQ 9u11 �Qu11k

#
1

2

Xn�1

i¼1

ui

 !2

�min 1;
Xn
j¼3

Duð jÞ
 !

1Zu :

The average heterozygosity for individual SNPs in the
HapMap data is 0.267. By contrast, all of theHaploBlock
and HaploBlockFinder block models have an average
heterozygosity of 0.586 or more, more than double that
for individual SNPs (see Figure 9). Equation 1 suggests
that increased heterozygosity leads to a stronger pertur-
bation process, which in turn explains the difference
in behavior of the Markov approximation for different
types of marker. Nonetheless, since Equation 1 provides
only an upper bound, it does not provide a complete
explanation of this relationship. More theoretical work
is required to identify a lower bound, as well as addi-
tional factors that affect the perturbation process.

DISCUSSION

In this work, we assessed the accuracy of the inde-
pendent and Markov approximations for representing
background variation in the human genome. Using
data taken from HapMap, we showed how the approx-
imation error varies for different physical distances and
along each autosome, when modeling both individual
SNPs and haplotype blocks of various models. Our core
observation is that the Markov model over haplotype
blocks is particularly accurate at representing markers
in strong linkage disequilibrium. By reference to the
perturbation process, we explained why the Markov ap-
proximation exhibits this behavior only when modeling
multiallelic haplotype blocks, rather than biallelic in-
dividual SNPs.
Ourmotivation for this work was to assess whether it is

important to use a Markov chain to represent haplotype
block variation or whether an independent model suf-
fices. Clearly, a Markov approximation can represent
the variation for a set of markers more accurately than
an independent approximation, due to the larger num-
ber of parameters available. However, our results show an
important additional benefit of the Markov model—that
when used with haplotype blocks, it is uniquely suited
for modeling genomic variation at high density. Models
of background variation combining haplotype blocks
and a Markov chain have been used by ourselves and
others (Daly et al. 2001; Anderson andNovembre 2003;
Greenspan and Geiger 2004a; Kimmel and Shamir
2004).
The error measure we employed is based on the

variation distance between a joint distribution and its
maximum-likelihood approximation. We used this mea-
sure because it permits direct comparison between the
independent and Markov approximations and has an
intuitive interpretation in terms of the proportion of a
distribution misrepresented by its approximation. How-
ever, this measure is not ideal, since it is biased by the
allele frequencies at individual markers, just like the jDj
measure of linkage disequilibrium to which it is related.
It would be fruitful to develop an equivalent of the D9
linkage disequilibrium measure for the Markov model,
to overcome this disadvantage. Nonetheless, since our
empirical observations were based on averages over
large numbers of sites, this shortcoming does not affect
the overall patterns observed.
We showed that the unusual accuracy of the Markov

model for representing haplotype blocks over short dis-
tances stemmed from the fact that blocks have higher
heterozygosity than individual SNPs. We also showed
that similar results can be achieved by arbitrarily group-
ing sets of adjacent SNPs into multiallelic markers. This
confirms our theoretical result that the behavior of the
Markov approximationdependsonallele diversity, rather
than on a specific model of haplotype blocks. Nonethe-
less, haplotype blocks based on statistical criteria offer
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other advantages over arbitrary groups of SNPs in terms
of model simplicity and the selection of htSNPs.

We referred above to the dependency of the Markov
model on the balance between the mixing and pertur-
bation processes. Beyond our initial observations, there
is work to be done in understanding how these two pro-
cesses interact and in developing more precise criteria
for determining when each one plays a more dominant
role. It is also desirable to ascertain whether a pop-
ulation must contain highly distinct haplotypes for the
perturbation effect to be seen. On this point, recent re-
search has found an abundance of common haplotypes
that differ at almost every site in human populations
(Zhang et al. 2003). Finally, it would be valuable to gen-
eralize our proof to a population of finite size and to
extend it to more than n ¼ 5 sites.
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APPENDIX

Here we prove in full the theoretical result outlined in this article.
Definitions: Under meiotic recombination, each offspring haplotype over n sites is formed from two parent

haplotypes y1 ¼ ðy11 ; . . . ; y1nÞ and y2 ¼ ðy21 ; . . . ; y2nÞ. Each meiosis entails a crossover vector r¼ (r1, . . . , rn) 2 f0, 1gn�1, in
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which ri ¼ 1 if a crossover took place between sites i and i1 1 and ri ¼ 0 otherwise. Let F(y1, y2, r) denote the offspring
haplotype that is generated by meiosis from y1 and y2, assuming a crossover vector r:

F ðy1; y2; r Þ ¼ y
Sðr ;1Þ
1 ; . . . ; ySðr ;nÞn : ðA1Þ

In Equation A1, S(r, i) is the index of the parent of site i in the offspring, namely Sðr ; iÞ ¼ 11
Pi�1

k¼1 rk modulo 2.
If there are an even number of recombinations up to site i then S(r, i)¼ 1; otherwise S(r, i)¼ 2. Since both parents are
selected randomly from the same distribution, we assumed without loss of generality that the first site in the offspring
comes from parent haplotype y1.

The probability of a crossover occurring between sites i and i1 1 is denoted by ui. We define the probabilityG(r) of a
crossover vector r in terms of these pairwise probabilities:

Gðr1; . . . ; rn�1Þ ¼
Yn�1

i¼1

u
ri
i � ð1� uiÞ1�ri : ðA2Þ

Recall that Pu(x) denotes the frequency of haplotype x in generation u. The frequency Pu11(x) of haplotype x in
generation u 1 1 due to meiotic recombination is the sum of the probabilities of all joint assignments to y1, y2, and r,
which yield x:

Pu11ðxÞ ¼
X

y1;y2;r jF ðy1;y2;rÞ¼x

Gðr ÞPuðy1ÞPuðy2Þ: ðA3Þ

For intermixing over n sites, each offspring haplotype can inherit sections from up to n haplotypes in the previous
generation, although in most cases less than n will be used. Let F 9(y1, . . . , yn, r) denote the haplotype generated from
y1, . . . , yn by intermixing under a crossover vector r:

F 9ðy1; y2; rÞ ¼ y
S9ðr ;1Þ
1 ; . . . ; yS9ðr ;nÞn : ðA4Þ

In Equation A4, S9(r, i) is the index of the parent of site i in the offspring, namely S9ðr ; iÞ ¼ 11
Pi�1

k¼1 rk. The function
S9(r, i) counts the number of crossovers that have taken place up to site i. The frequency P9u11(x) of haplotype x in
generation u 1 1 due to intermixing on parent distribution Pu is as follows:

P 9u11ðxÞ ¼
X

y1;...;yn ;r jF 9ðy1;...;yn ;rÞ¼x

GðrÞ
Yn
i¼1

PuðyiÞ: ðA5Þ

Intermixing and meiosis: We prove the following bound on the variation distance between the haplotype
distribution Pu11 arising from meiosis on generation u and the distribution P 9u11 arising from intermixing:

kPu11 � P 9u11k#
1

2

Xn�1

i¼1

ui

 !2

� min 1;
Xn
j¼3

Duð jÞ
 !

: ðA6Þ

Recall that Du( j) is defined as the heterozygosity of site j in generation u, where Duð jÞ ¼ 1�
P

xj
ðPuðxjÞÞ2 is the

probability that two haplotypes randomly chosen from Pu differ at site j.
Let R¼ f0, 1gn�1 denote the set of all possible crossover vectors r. Let R� be the subset fr 2 R j

P
j rj # 1g consisting

of crossover vectors representing #1 crossovers, and let R1 ¼ fr 2 R j
P

j rj $ 2g denote the subset representing $2
crossovers. Clearly, R ¼ R� [ R1 and R� \ R1 ¼ Ø. The frequency of haplotype x after meiosis, given in Equation A3,
can therefore be written as

Pu11ðxÞ ¼
X

y1;y2;r2R�jF ðy1;y2;r Þ¼x

GðrÞPuðy1ÞPuðy2Þ1
X

y1;y2;r2R1jF ðy1;y2;r Þ¼x

GðrÞPuðy1ÞPuðy2Þ: ðA7Þ

Similarly, the frequency of x after intermixing, given in Equation A5, can be written as

P 9u11ðxÞ ¼
X

y1;...;yn ;r2R�jF 9ðy1;...;yn ;r Þ¼x

GðrÞ
Yn
i¼1

PuðyiÞ1
X

y1;...;yn ;r2R1jF 9ðy1;...;yn ;rÞ¼x

Gðr Þ
Yn
i¼1

PuðyiÞ: ðA8Þ
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Recall that if r 2 R� then
P

j rj # 1. In these cases, S(r, i) ¼ S9(r, i) for all i, yielding F 9(y1, . . . , yn, r) ¼ F(y1, y2, r). In
other words, when less than two crossovers occur, the haplotype obtained by meiosis is identical to that obtained by
intermixing for the same parents y1 and y2. Consequently, we rewrite Equation A8 as follows:

P 9u11ðxÞ ¼
X

y1;y2;r2R�jF ðy1;y2;rÞ¼x

Gðr ÞPuðy1ÞPuðy2Þ1
X

y1;...;yn ;r2R1jF 9ðy1;...;yn ;rÞ¼x

Gðr Þ
Yn
i¼1

PuðyiÞ: ðA9Þ

Since the sums in Equations A7 and A9 corresponding to no more than one crossover are identical, the variation
distance between Pu11 and P9u11 is due to two or more crossovers:

kPu11 � P 9u11k ¼ 1

2

X
x

�����
X

y1;y2;r2R1jF ðy1;y2;rÞ¼x

Gðr ÞPuðy1ÞPuðy2Þ �
X

y1;...;yn ;r2R1jF 9ðy1;...;yn ;rÞ¼x

Gðr Þ
Yn
i¼1

PuðyiÞ
�����: ðA10Þ

By introducing the unity sum
P

y3;...;yn

Qn
i¼3 PuðyiÞ ¼ 1 into the first term of Equation A10, we obtain

kPu11 � P 9u11k ¼ 1

2

X
x

�����
X

y1;...;yn ;r2R1jF ðy1;y2;rÞ¼x

Gðr Þ
Yn
i¼1

PuðyiÞ �
X

y1;...;yn ;r2R1jF 9ðy1;...;yn ;rÞ¼x

Gðr Þ
Yn
i¼1

PuðyiÞ
�����: ðA11Þ

Wenow derive the bound for kPu11� P 9u11k, as given by Equation A6. Let [a¼ b] denote the function that returns 1
if a ¼ b and 0 otherwise, and define [a 6¼ b] ¼ 1 � [a ¼ b]. Equation A11 is reformulated as follows:

kPu11 � P 9u11k ¼ 1

2

X
x

�����
X

y1;...;yn ;r2R1

GðrÞ
Yn
i¼1

PuðyiÞ � f½F ðy1; y2; r Þ ¼ x� � ½F 9ðy1; . . . ; yn; r Þ ¼ x�g
�����

#
X
r2R1

GðrÞ
X

y1;...;yn

Yn
i¼1

PuðyiÞ �
1

2

X
x

j½F ðy1; y2; rÞ ¼ x� � ½F 9ðy1; . . . ; yn; rÞ ¼ x�j

¼
X
r2R1

Gðr Þ
X

y1;...;yn

Yn
i¼1

PuðyiÞ � ½F ðy1; y2; rÞ 6¼ F 9ðy1; . . . ; yn; rÞ�: ðA12Þ

The last equality follows because if F(y1, y2, r) ¼ F 9(y1, . . . , yn, r) then the expression j½F ðy1; y2; rÞ ¼ x� � ½F 9ðy1; . . . ;
yn ; r Þ ¼ x�j ¼ 0 for all x, and if F(y1, y2, r) 6¼ F9(y1, . . . , yn, r), then j½F ðy1; y2; r Þ ¼ x� �½F 9ðy1; . . . ; yn ; rÞ ¼ x�j ¼ 1 for exactly
two values of x, namely x ¼ F(y1, y2, r) and x ¼ F9(y1, . . . , yn, r).

The value [F(y1, y2, r) 6¼ F 9(y1, . . . , yn, r)] ¼ 1 if the haplotype that arises from meiosis is different from that arising
from intermixing. This condition is fulfilled if the haplotypes differ in at least one site. The haplotypes are always
identical at sites 1 and 2 since the earliest that an observed double recombination can occur is between sites 2 and 3. In
other words, S(r, 1) ¼ S9(r, 1) and S(r, 2) ¼ S9(r, 2) for any crossover vector r. By summing the possibilities for the
remaining sites 3, . . . , n, we obtain a simple bound:

½F ðy1; y2; rÞ 6¼ F 9ðy1; . . . ; yn; rÞ�#
Xn
j¼3

½ ySðr ;jÞj 6¼ y
S9ðr ;jÞ
j �: ðA13Þ

Equations A12 and A13 yield

kPu11 � P 9u11k#
X
r2R1

Gðr Þ
Xn
j¼3

X
y1;...;yn

Yn
i¼1

PuðyiÞ � ½ ySðr ;jÞj 6¼ y
S9ðr ;jÞ
j �: ðA14Þ

Since, in the worst case, every site from the third one onward has a different source under meiosis and intermixing,P
y1;...;yn

Qn
i¼1 PuðyiÞ � ½ ySðr ;jÞj 6¼ y

S9ðr ;jÞ
j � is the probability that two independently selected haplotypes fromdistribution Pu

differ at site j. This is precisely the definition of heterozygosity Du( j), so

kPu11 � P 9u11k#
X
r2R1

Gðr Þ
Xn
j¼3

Duð jÞ: ðA15Þ

Since [F(y1, y2, r) 6¼ F 9(y1, . . . , yn, r)] # 1 by definition, an additional bound is obtained for kPu11 � P9u11k from
Equation A12:

kPu11 � P 9u11k#
X
r2R1

GðrÞ
X

y1;...;yn

Yn
i¼1

PuðyiÞ ¼
X
r2R1

Gðr Þ: ðA16Þ
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Finally, using the probability G(r) of a crossover vector r (Equation A2), we bound
P

r2R1 Gðr Þ by summing the
probability of every possible pair of crossovers:

X
r2R1

Gðr Þ#
Xn�1

i¼1

ui
Xn�1

k¼i11

uk #
1

2

Xn�1

i¼1

ui

 !2

: ðA17Þ

Equations A15–A17 yield the bound for kPu11 � P9u11k, given by Equation A6.
Markov accuracy after intermixing: Recall that P9u11(x) is the haplotype distribution that results from intermix-

ing parent haplotype distribution Pu and that Q9u11(x) is the Markov approximation of P9u11(x). We prove that for
n # 5

kP 9u11 � Q 9u11k# kPu � Quk: ðA18Þ

For haplotypes with n. 5 sites, this problem remains open. However, we conjecture that it is true for all values of n,
as confirmed by extensive simulation studies up to n ¼ 16.

The formula for P9u11(x) in Equation A5 is now rewritten in terms of contiguous sections inherited from a parent,
using the probability G(r) of each crossover vector r and the probability of the parent haplotype sections that lead to x
under r,

P 9u11ðxÞ ¼
X
r2R

GðrÞ
YS9ðr ;nÞ
k¼1

Puðxðr ;kÞÞ;

where

xðr ;kÞ ¼ xLðr ;kÞ; . . . ; xU ðr ;kÞ

Lðr ; kÞ ¼ minfi j S9ðr ; iÞ ¼ kg

U ðr ; kÞ ¼ maxfi j S9ðr ; iÞ ¼ kg: ðA19Þ

In Equation A19, the functions L(r, k) and U(r, k) denote, respectively, the first and last sites in the offspring
haplotype that originate from parent S9(r, i)¼ k under crossover vector r. Recall that S9(r, i) is the index of the parent
haplotype for site i of the offspring haplotype when intermixing with crossover vector r. The term Pu(x(r,k)) denotes the
marginal distribution PuðxLðr ;kÞ; . . . ; xU ðr ;kÞÞ ¼

P
x1;...;xLðr ;kÞ�1;xU ðr ;kÞ11;...;xl

Puðx1; . . . ; xlÞ.
The process of intermixing can be viewed as the transformation of a parent haplotype distribution Pu into an

offspring distribution P9u11. This transformation can be decomposed into a series of atomic transformations, one over
each possible crossover point. Let P 9iu11 be the haplotype distribution obtained from intermixing if crossovers are
allowed only over sites 1 to i. In other words, P 9iu11 is the result of intermixing on Pu if all values ui, . . . , un�1 are set to
zero. Clearly, the distribution P 91u11 equals the parent haplotype distribution Pu, since P 9

1
u11 is the result of intermixing

if no crossing over is allowed. Similarly, the distribution P 9nu11 equals the distribution P9u11 that emerges from
intermixing over all sites, since the full set of crossovers between sites 1 and n is allowed. As a result, the transformation
Pu/ P9u11 can be expressed as a series of transformations P 91u11/P 92u11/ � � �/P 9nu11, where each step P 9iu11/P 9i11

u11 in
the series introduces an additional crossover point between sites i and i 1 1.

LetRibe the set of crossover vectors inwhich crossovers occuronly between sites 1 to i; i.e.,Ri¼fr2R j ri¼ 0, . . . , rn�1¼
0g. Let Gi(r) be the probability of crossover vector r 2 Ri, defined as follows:

Giðr1; . . . ; rn�1Þ ¼
Yi�1

j¼1

u
rj
j � ð1� ujÞ1�rj :

Using these definitions, the probability P 9iu11ðx) of haplotype x after intermixing over sites 1, . . . , i is analogous to
P9u11(x), given in Equation A19:

P 9iu11ðx1; . . . ; xnÞ ¼
X
r2Ri

Giðr Þ
YS9ðr ;nÞ
k¼1

Puðxðr ;kÞÞ ¼
X
r2Ri

Giðr Þ
YS9ðr ;nÞ�1

k¼1

Puðxðr ;kÞÞ
 !

PuðxLðr ;S9ðr ;nÞÞ; . . . ; xnÞ: ðA20Þ
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The recurrence relation between P 9i11
u11 and P 9iu11 is explicated by splitting P 9i11

u11 ðxÞ into two parts:

P 9i11
u11 ðxÞ ¼

X
r2Ri11jri¼0

Gi11ðrÞ
YS9ðr ;nÞ
k¼1

Puðxðr ;kÞÞ1
X

r2Ri11jri¼1

Gi11ðr Þ
YS9ðr ;nÞ
k¼1

Puðxðr ;kÞÞ

¼ ð1� uiÞ
X

r2Ri11jri¼0

Giðr Þ
YS9ðr ;nÞ
k¼1

Puðxðr ;kÞÞ

1 ui
X

r2Ri11jri¼1

GiðrÞ
YS9ðr ;nÞ�1

k¼1

Puðxðr ;kÞÞ
 !

PuðxLðr ;S9ðr ;nÞÞ; . . . ; xnÞ:

If ri¼ 0 then no recombination took place between sites i and i1 1, so the sumover r2Ri11 is the same as that over r2
Ri. If ri¼ 1 then the last recombination took place between i and i1 1, soU(r, S9(r, n)� 1)¼ i and L(r, S9(r, n))¼ i1 1.
Consequently,

P 9i11
u11 ðxÞ ¼ ð1� uiÞ

X
r2Ri

Giðr Þ
YS9ðr ;nÞ
k¼1

Puðxðr ;kÞÞ

1 ui
X

r2Ri11jri¼1

Giðr Þ
YS9ðr ;nÞ�1

k¼1

Puðxðr ;kÞÞ
 !

PuðxLðr ;S9ðr ;nÞÞ; . . . ; xnÞ

¼ ð1� uiÞP 9iu11ðx1; . . . ; xnÞ

1 ui
X

r2Ri11jri¼1

Giðr Þ
YS9ðr ;nÞ�2

k¼1

Puðxðr ;kÞÞ
 !

PuðxLðr ;S9ðr ;nÞ�1Þ; . . . ; xiÞPuðxi11; . . . ; xnÞ: ðA21Þ

We now replace the sum over r 2 Ri11 j ri ¼ 1 by a different sum over r9 2 Ri, where each vector r9 corresponds to a
vector r without the crossover between sites i and i 1 1:

P 9i11
u11 ðxÞ ¼ ð1� uiÞP 9iu11ðx1; . . . ; xnÞ

1 ui
X
r 92Ri

Giðr 9Þ
YS9ðr 9;nÞ�1

k¼1

Puðxðr 9;kÞÞ
 !

PuðxLðr 9;S9ðr 9;nÞÞ; . . . ; xiÞPuðxi11; . . . ; xnÞ

¼ ð1� uiÞ � P 9iu11ðx1; . . . ; xnÞ1 ui � P 9iu11ðx1; . . . ; xiÞPuðxi11; . . . ; xnÞ: ðA22Þ

Wehave replacedGi(r) withGi(r9) in the transformation from Equation A21 to Equation A22 since the functionGi is
not affected by crossovers after site i. The function S9(r, n) in Equation A21 counts the total number of crossovers
represented by vector r. It is replaced by S9(r9, n) 1 1 in Equation A22 since r9 has one fewer crossover than r. The
product ofmarginal distributions

QS9ðr ;nÞ�2
k¼1 Puðxðr ;kÞÞ in Equation A21 is replaced by the product

QS9ðr 9;nÞ�1
k¼1 Puðxðr 9;kÞÞ in

Equation A22 since it is related only to chromosomal sections preceding site i, whose parent haplotypes are identical
under r and r9. Similarly,L(r, S9(r,n)� 1) inEquationA21 is replacedwithL(r9, S9(r9,n)) inEquationA22 since the left edge
of the penultimate contiguous section in r that ends at site i becomes the left edge of the last contiguous section in r9.

The distribution P 9iu11 is the result of intermixing only up to site i, so its marginal P 9iu11ðxi11; . . . ; xnÞ over sites i 1
1, . . . , n is the same as the parent marginal Pu(xi11, . . . , xn). Consequently, Equation A22 implies that

P 9i11
u11 ðxÞ ¼ ð1� uiÞ � P 9iu11ðx1; . . . ; xnÞ1 ui � P 9iu11ðx1; . . . ; xiÞP 9iu11ðxi11; . . . ; xnÞ: ðA23Þ

Equation A23 states that the effect of introducing the additional crossover point between sites i and i 1 1 is to
reconstitute a proportion ui of the population from the marginal distributions on either side of the crossover point,
leaving the remaining 1 � ui proportion untouched. Equation A23 also holds in the following marginal form by
summing over x1, . . . , xi�1, xi12, . . . , xn:

P 9i11
u11 ðxi ; xi11Þ ¼ ð1� uiÞ � P 9iu11ðxi ; xi11Þ1 ui � P 9iu11ðxiÞP 9iu11ðxi11Þ:
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We now show a similar result for the Markov approximation Q 9iu11, defined as follows:

Q 9iu11ðx1; . . . ; xnÞ ¼ P 9iu11ðx1Þ
Yn�1

j¼1

P 9iu11ðxj11 j xjÞ: ðA24Þ

The recurrence relation between Q 9i11
u11 and Q 9iu11 is explicated as follows:

Q 9i11
u11 ðxÞ ¼ P 9i11

u11 ðx1Þ
Yn�1

j¼1

P 9i11
u11 ðxj11 j xjÞ

¼ P 9iu11ðx1Þ
Yi�1

j¼1

P 9iu11ðxj11 j xjÞ � P 9i11
u11 ðxi11 j xiÞ �

Yn�1

j¼i11

P 9iu11ðxj11 j xjÞ

¼ Q 9iu11ðx1; . . . ; xiÞ �
P 9i11
u11 ðxi ; xi11Þ
P 9i11
u11 ðxiÞ

�
Yn�1

j¼i11

P 9iu11ðxj11 j xjÞ

¼ Q 9iu11ðx1; . . . ; xiÞ �
ð1� uiÞP 9iu11ðxi ; xi11Þ1 uiP 9

i
u11ðxiÞP 9iu11ðxi11Þ

P 9iu11ðxiÞ
�
Yn�1

j¼i11

P 9iu11ðxj11 j xjÞ

¼ ð1� uiÞ � Q 9iu11ðx1; . . . ; xiÞ � P 9iu11ðxi11 j xiÞ �
Yn�1

j¼i11

P 9iu11ðxj11 j xjÞ

1 ui � Q 9iu11ðx1; . . . ; xiÞ � P 9iu11ðxi11Þ �
Yn�1

j¼i11

P 9iu11ðxj11 j xjÞ

Q 9i11
u11 ðxÞ ¼ ð1� uiÞ � Q 9iu11ðx1; . . . ; xnÞ1 ui � Q 9iu11ðx1; . . . ; xiÞ � Q 9iu11ðxi11; . . . ; xnÞ: ðA25Þ

We replaced P 9i11
u11 ðxiÞ with P 9iu11ðxiÞ at several points above since the intermixing process does not affect the

marginal allele frequencies for any individual site. Similarly, we replaced P 9i11
u11 ðxj11 j xjÞ with P 9iu11ðxj11 j xjÞ for any j 6¼ i

since the additional crossover permitted between sites i and i1 1 affects onlymarginal distributions containing both xi
and xi11. Equation A25 states the analogous result for the series of Markov approximations Q 91u11; . . . ;Q 9nu11 as
Equation A23 states for the series of distributions P 91u11; . . . ; P 9

n
u11.

Recall that we aim to prove kP9u11�Q9u11k# kPu�Quk for n# 5. Since P 91u11 ¼ Pu and P 9nu11 ¼ P 9u11, this inequality
can be expressed as kP 9nu11 � Q 9nu11k# kP 91u11 � Q 91u11k. To establish this inequality, we prove that for 1 # i # n � 1,

kP 9i11
u11 � Q 9i11

u11 k# kP 9iu11 � Q 9iu11k: ðA26Þ

We split the proof of Equation A26 into two cases, i¼ 1 and i¼ 2. By considering the haplotypes from their other end
points, these proofs also apply, respectively, for i¼ n� 1 and i¼ n� 2, due to symmetry. This covers all values of 1# i#
n � 1 provided n # 5.

Two properties of variation distance are needed. Given two multivariate distributions A(x, y) and B(x, y) with
marginal distributions AðxÞ ¼

P
y Aðx; yÞ and BðxÞ ¼

P
y Bðx; yÞ, the first property states that kA(x, y) � B(x, y)k $

kA(x)� B(x)k. Given two mixture distributions A(x)¼ aA1(x)1 (1� a)A2(x) and B(x)¼ aB1(x)1 (1� a)B2(x), the
second property states that kA(x) � B(x)k # akA1(x) � B1(x)k 1 (1 � a)kA2(x) � B2(x)k. Proofs of these two
properties are provided at the end of the appendix.

For i ¼ 1, we prove Equation A26 by rewriting P 92u11 and Q 92u11 in terms of P 91u11 and Q 91u11, using the recurrence
relations in Equations A23 and A25:

P 92u11ðxÞ ¼ ð1� u1Þ � P 91u11ðx1; . . . ; xnÞ1 u1 � P 91u11ðx1Þ � P 91u11ðx2; . . . ; xnÞ

Q 92u11ðxÞ ¼ ð1� u1Þ � Q 91u11ðx1; . . . ; xnÞ1 u1 � Q 91u11ðx1Þ � Q 91u11ðx2; . . . ; xnÞ

¼ ð1� u1Þ � Q 91u11ðx1; . . . ; xnÞ1 u1 � P 91u11ðx1Þ � Q 91u11ðx2; . . . ; xnÞ:
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The last equality follows because the marginal distribution for an individual site is identical for both P 91u11 and its
Markov approximation Q 91u11. The proof of Equation A26 for i ¼ 1 is completed using the two properties of variation
distance:

kP 92u11 � Q 92u11k# ð1� u1Þ � kP 91u11 � Q 91u11k

1 u1 �
1

2

X
x1;...;xn

jP 91u11ðx1ÞP 91u11ðx2; . . . ; xnÞ � P 91u11ðx1ÞQ 91u11ðx2; . . . ; xnÞj

¼ ð1� u1Þ � kP 91u11 � Q 91u11k

1 u1 �
1

2

X
x1

P 91u11ðx1Þ
X

x2;...;xn

jP 91u11ðx2; . . . ; xnÞ � Q 91u11ðx2; . . . ; xnÞj

# ð1� u1Þ � kP 91u11 � Q 91u11k1 u1 � kP 91u11 � Q 91u11k
¼ kP 91u11 � Q 91u11k:

For i ¼ 2, the proof of Equation A26 proceeds similarly:

P 93u11ðxÞ ¼ ð1� u2Þ � P 92u11ðx1; . . . ; xnÞ1 u2 � P 92u11ðx1; x2Þ � P 92u11ðx3; . . . ; xnÞ
Q 93u11ðxÞ ¼ ð1� u2Þ � Q 92u11ðx1; . . . ; xnÞ1 u2 � Q 92u11ðx1; x2Þ � Q 92u11ðx3; . . . ; xnÞ

¼ ð1� u2Þ � Q 92u11ðx1; . . . ; xnÞ1 u2 � P 92u11ðx1; x2Þ � Q 92u11ðx3; . . . ; xnÞ: ðA27Þ

The last equality follows since the joint distribution over any two adjacent sites is unchanged by the Markov
approximation. The proof of Equation A26 for i ¼ 2 is completed using the two properties of variation distance:

kP 93u11 � Q 93u11k# ð1� u2Þ � kP 92u11 � Q 92u11k

1 u2 �
1

2

X
x1;...;xn

jP 92u11ðx1; x2ÞP 92u11ðx3; . . . ; xnÞ � P 92u11ðx1; x2ÞQ 92u11ðx3; . . . ; xnÞj

¼ ð1� u2Þ � kP 92u11 � Q 92u11k

1 u2 �
1

2

X
x1;x2

P 92u11ðx1; x2Þ
X

x3;...;xn

jP 92u11ðx3; . . . ; xnÞ � Q 92u11ðx3; . . . ; xnÞj

# ð1� u2Þ � kP 92u11 � Q 92u11k1 u2 � kP 92u11 � Q 92u11k
¼ kP 92u11 � Q 92u11k: ðA28Þ

The proofs for i ¼ n � 1 and i ¼ n � 2 are obtained by reversing the order of the conditional probabilities in the
Markov chain. Since this covers all possible values of 1 # i # n � 1 provided n # 5, this establishes the inequality
kP 9i11

u11 � Q 9i11
u11 k# kP 9iu11 � Q 9iu11k and therefore that kP 9u11 � Q 9u11k# kPu � Quk for n# 5, as stated in Equation A18.

For n. 5, this method breaks down in Equation A27 for i¼ 3 since the marginal distribution Q 93u11ðx1; x2; x3Þ of the
Markov approximation cannot be substituted by the marginal P 93u11ðx1; x2; x3Þ. This in turn prevents the common
factor P 93u11ðx1; x2; x3Þ from being extracted in Equation A28 and summed over

P
x1;x2;x3

to unity. A different form of
proof would therefore be required to establish Equation A18 for all n, as we conjecture.

Markov invariance: We prove that the Markov approximations of the distributions arising from intermixing and
meiosis are identical:

kQu11 � Q 9u11k ¼ 0: ðA29Þ

To prove Equation A29, it is sufficient to prove that Pu11(xi, xi11) ¼ P9u11(xi, xi11) for all i ¼ 1, . . . , n � 1 since the
Markov approximations Qu11 and Q9u11 are defined solely in terms of these joint distributions between adjacent sites.

We compute Pu11(xi, xi11) by marginalizing Pu11(x), as given in Equation A3:

Pu11ðxi ; xi11Þ ¼
X
r

Gðr Þ
X

y1;y2jySðr ;iÞi ¼xi ;y
Sðr ;i11Þ
i11 ¼xi11

Puðy1i ; y1i11ÞPuðy2i ; y2i11Þ:

Wenow split the sum over r into two. If ri¼ 0 then there is no crossover between sites i and i1 1. In this case, S(r, i)¼
S(r, i1 1), yielding that both sites in x originate from the same parent. If ri¼ 1 then there is a crossover between sites i
and i 1 1. In this case, S(r, i) 6¼ S(r, i 1 1), yielding that each site in x originates from a different parent. Therefore
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Pu11ðxi ; xi11Þ ¼
X
r jri¼0

GðrÞPuðxi ; xi11Þ1
X
r jri¼1

Gðr ÞPuðxiÞPuðxi11Þ:

Using the definition of G(r) in Equation A2, it follows that
P

r jri¼0 Gðr Þ ¼ 1� ui and
P

r jri¼1 GðrÞ ¼ ui .
Consequently, Pu11(xi, xi11) ¼ (1 � ui) � Pu(xi, xi11) 1 ui � Pu(xi)Pu(xi11). This result corresponds with the intuition
that the offspring joint distribution over sites i and i 1 1 is the average of the parent joint distribution and parent
marginal distributions, weighted by the probability of a crossover and no crossover, respectively. By similar means, it
can be shown that P9u11(xi, xi11)¼ (1� ui) � Pu(xi, xi11)1 ui � Pu(xi)Pu(xi11), yielding the desired equality Pu11(xi, xi11)¼
P9u11(xi, xi11). This proves Equation A29.

Properties of variation distance: The first property relates the variation distance between two multivariate
distributions A(x, y) and B(x, y) to the variation distance between the twomarginal distributions AðxÞ ¼

P
y Aðx; yÞ and

BðxÞ ¼
P

y Bðx; yÞ :

kAðx; yÞ � Bðx; yÞk ¼ 1

2

X
x

X
y

jAðx; yÞ � Bðx; yÞ j

$
1

2

X
x

�����
X
y

fAðx; yÞ � Bðx; yÞg
�����

¼ 1

2

X
x

jAðxÞ � BðxÞ j

¼ kAðxÞ � BðxÞk:

The second property relates the variation distance between twomixture distributions A(x)¼ aA1(x)1 (1� a)A2(x)
and B(x) ¼ aB1(x) 1 (1 � a)B2(x) to the variation distances between the respective mixture elements:

kAðxÞ � BðxÞk ¼ 1

2

X
x

jAðxÞ � BðxÞ j

¼ 1

2

X
x

jaðA1ðxÞ � B1ðxÞÞ1 ð1� aÞðA2ðxÞ � B2ðxÞÞ j

#
1

2

X
x

jaðA1ðxÞ � B1ðxÞÞ j 1
1

2

X
x

j ð1� aÞðA2ðxÞ � B2ðxÞÞ j

¼ akA1ðxÞ � B1ðxÞk1 ð1� aÞkA2ðxÞ � B2ðxÞk:
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